
Integrating a Natural Language Message Pre-Processor with UIMA

Eric Nyberg, Eric Riebling, Richard C. Wang and Robert Frederking
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 USA
E-mail: {ehn,er1k,rcwang,ref}@cs.cmu.edu

Abstract
This paper describes the use of the Unstructured Information Management Architecture (UIMA) to integrate a set of natural language
processing (NLP) tools in the RADAR system. The challenge was to define a common data model and a set of component interfaces
for these tools, so that they could be integrated into a single system. The integrated system is used to pre-process each email arriving in
the RADAR user’s IMAP store. We present a UIMA collection processing engine for RADAR, including a common type system for
text analysis results and annotators for each of the NLP tools. The paper also includes an analysis of system performance and a
discussion of the lessons learned through use the of UIMA for this integration task.

1. Introduction
This paper describes the use of the Unstructured
Information Management Architecture (UIMA) to
integrate a set of natural language processing (NLP)
components in the RADAR system. The RADAR
(Reflective Agent with Distributed Adaptive Reasoning)
system is comprised of a set of intelligent agents that
assist the user with routine tasks such as email and
scheduling 1 . Its initial test domain is conference
planning.

RADAR agents include a Calendar Agent, which notices
requests for appointments and helps the user to fit them
into his or her calendar, and a Briefing Assistant, which
extracts important parts of documents such as meeting
minutes to provide automatic briefings (Kumar et al.
2007). These two RADAR agents assume that email
messages have been pre-processed with text analysis
software to recognize important ranges of text (for
example, a request for a meeting. or an action item). This
pre-processing is accomplished by a large set of both
pre-existing, and project-developed, NLP tools.

The architectural challenge was to define a common data
model and a set of component interfaces for these tools, so
that they could be integrated into a single system. The
integrated system is used to pre-process each email
arriving in the RADAR user’s IMAP store; the output of
the NLP tools is stored in the form of standoff annotations
- data structures derived from text analysis which are
stored separately from the text itself. The UIMA
framework is used to define a common type system for
text analysis results. An annotator wrapper was written
for each NLP component in the pre-processor. Each
annotator wrapper is responsible for providing input to an
NLP component in its native format, and converting the

1 http://radar.cs.cmu.edu/

output of the component back into standoff annotations.
The annotator wrappers were integrated into a single
collection processing engine (CPE). An object referred to
as the common analysis structure (CAS) is created for
each input message; this structure includes storage for the
original text, as well as storage and an index for each
annotation type. Components produce instances of
annotation types, which are stored in the CAS as it is
passed from component to component. The RADAR CPE
also includes Collection Reader and CAS Consumer
components, which are responsible for reading and
writing email messages and their annotations to and from
the persistent database storage. The full CPE is depicted
in Figure 1.

Annotations Database

1 a new email message is
stored in the annotations
database

RADAR Collection Processing Engine (CPE)

Collection
Reader

CAS
ConsumerAnnotator Annotator…

CAS

2 A UIMA Collection Processing Engine is invoked. Stand-off
annotations (tags) are created to capture the system’s
understanding of the email.

Radar
Agent

email
messages

message
annotations (tags)

3 The results are stored in the
Annotations Database for use
by other RADAR agents

Radar
Agent…

Annotations Database

1 a new email message is
stored in the annotations
database

RADAR Collection Processing Engine (CPE)

Collection
Reader

CAS
ConsumerAnnotator Annotator…

CAS

2 A UIMA Collection Processing Engine is invoked. Stand-off
annotations (tags) are created to capture the system’s
understanding of the email.

Radar
Agent

email
messages

message
annotations (tags)

3 The results are stored in the
Annotations Database for use
by other RADAR agents

Radar
Agent…

Figure 1: The RADAR Collection Processing Engine

The following sections provide more detail regarding the
design and implementation of the RADAR CPE. Section
2 describes the NLP components that were integrated.
Section 3 describes the process that was followed to
integrate the different modules into the CPE. Section 4

28

provides an analysis of system performance and discusses
the lessons learned when using UIMA to integrate our
suite of NLP components. Section 5 concludes with some
suggestions for future work.

2. Annotators & Related Components
This section provides a list of the annotators in the
RADAR CPE, including a brief description of each
annotator’s subtask, the component that it wraps, its input
annotation types (if any) and its output annotation types.
The annotators are described in the order that they are run
for each input email.

2.1 Email Opening Annotator
 The Email Opening Annotator identifies the span of text
in the message that contains the opening or greeting, e.g.
"Dear Blake,". This annotator is implemented by a
hand-coded set of surface patterns written in the Mixup
language provided by the MinorThird toolkit (Cohen,
2004). It is the first component to process the email text,
and it requires no prior input annotations. It outputs
instances of a single, simple annotation type with no
attributes: EMAIL_HEADING.

2.2 Typo Annotator
The Typo Annotator identifies spans of text in the
message that are likely to be misspelled words, and lists
alternatives. This annotator is implemented via the open
source Jazzy spell checker2, and it requires no prior input
annotations. It outputs instances of a single annotation
type called TypoAnnotation, which has two attributes:
Typo, the token string containing the spelling error, and
Corrections, an array of strings containing proposed
corrections, sorted in order of increasing string edit
distance from the original token string.

2.3 Connexor Annotator
The Connexor Annotator uses the Connexor parser3 to
mark spans of text denoting sentences, tokens, parts of
speech and lemmas for tokens, and functional dependency
grammar parses for sentences. This annotator requires no
prior input annotations, and outputs instances of three
annotation types: ConnexorSentence, ConexorToken
(including attributes POS and Lemma), and
ConnexorParse (which includes an attribute, Value, which
contains a string representation of the Connexor parse
analysis).

2.4 Temporal Expression Annotator
The Temporal Expression Annotator identifies spans of
text containing temporal expressions such as "next
Thursday". This annotator is implemented using
MinorThird compiled annotation rules. It outputs a single
annotation type, TimeExpression, which includes an
attribute, AnchoredValue, containing a canonical time
expression for the precise date and time indicated by the

 2 http://jazzy.sourceforge.net/
3 http://www.connexor.eu/

surface text, in a format based on ISO8601 (Han et. Al,
2006). Note that a relative time expression like “next
Thursday” can only be resolved to an AnchoredValue by
calculating its calendar position relative to the time that
the email was sent.

2.5 Functional Structure Annotator
The Functional Structure (FS) Annotator processes the
information provided by the prior annotations to produce
a grammatical functional structure or f-structure for each
sentence. Each f-structure contains information about the
grammatical functions (or roles) expressed in the sentence,
such as subject, object, indirect object, etc. The FS
Annotator is implemented… (need something from Eric
R. here). This annotator requires input annotations
EMAIL_HEADING, CXR_PARSE, and TEMPORAL_EXPRESSION,
and produces a single output annotation, F_STRUCTURE.

2.6 General Frame (GFrame) Annotator
The General Frame (GFrame) Annotator processes the
F_STRUCTURE annotations to produce a general (that is,
not domain-specific) semantic frame representation. The
GFrame Annotator uses the Mapper component from the
KANTOO machine translation system (a general
transformation engine for feature structures) (Nyberg et
al., 2002), and a set of general (non-domain-specific)
interpretation rules. The GFrame annotator outputs a
single annotation type, GFRAME.

2.7 Domain Frame (DFrame) Annotator
The Domain Frame (DFrame) Annotator processes the
F_STRUCTURE and Gframe annotations for each sentence
to produce a domain-specific semantic frame
representation, for the conference scheduling domain.
The DFrame annotator is implemented using the
KANTOO Mapper component and a set of
domain-specific interpretation rules. The DFrame
annotator outputs a single annotation type, DFRAME.

2.8 Person Name Annotator
The Person Name Annotator identifies possible person
names using a Hidden Markov Model trained with the
MinorThird toolkit. Outputs a single annotation type,
PERSON_NAME_VPHMM.

2.9 RADAR Person Annotator
The RADAR Person Annotator identifies names of
known individuals, e.g. “Blake Randal”, using a Hidden
Markov Model trained with the MinorThird toolkit 4 .
Outputs a single annotation type, RADAR_PERSON.

2.10 SCONE Implicit Feature Annotator
The SCONE Implicit Feature Annotator looks up
information from the SCONE Knowledge Base for terms
in email. Outputs a single annotation type,

4 http://minorthird.sourceforge.net/

29

IMPLICIT_FEATURE.

2.11 SCONE Semantic Annotator
The SCONE Semantic Annotator connects and
communicates with a network-based SCONE and
SconeGrammar server, retrieving semantic and/or
element data relations that SCONE has for a given text. It
outputs three annotations: DISCOURSE_STRUCTURE
(attributes: SEMANTIC_VALUE, STRUCTURE_SPEC_TYPE),
BRIEFING_CONCEPT (attribute: VALUE), and
BRIEFING_HEURISTIC (attribute: VALUE).

2.12 Vendor XML Annotator
The Vendor XML Annotator produces a custom XML
representation for conference vendor order confirmation
and vendor quote e-mails (as for, e.g., food providers).
This annotator outputs a single annotation type,
VENDOR_XML (with attribute VALUE).

2.13 Space Request Annotator
The Space Request Annotator extracts information from
e-mails requesting physical space (office/room/lab space,
etc.) and produces a custom XML representation. This
annotator outputs a single annotation type, SPACE_XML
(with attribute SPACE_REQUEST_VALUE).

2.14 Task Annotator
The Task Annotator identifies overall tasks for the
RADAR agents, where tasks are pre-defined in the
conference scheduling domain. This annotator outputs a
single annotation type, TASK (with attributes
TASK_TEMPLATE and TASK_CATEGORY).

2.15 Briefing Annotator
The Briefing Annotator uses 6 sets of trained Minorthird
models to guess the likelihood of each email being one of
six types of briefing request. (These are used to generate a
briefing email to the conference organizer’s supervisor.)
Returns a single annotation whose value is a string
containing the subset of the 6 types deemed possible, as
comma separated values: "attendance", "av", "food",
"general", "reschedule", "room". This annotator produces
a single annotation type, BRIEFING (with attribute
BRIEFING_CATEGORIES).

3. RADAR CPE Integration
The components listed in Section 2 were integrated into a
single Collection Processing Engine (CPE) for RADAR.
In addition to the annotator listed above, two additional
UIMA components were required: a) a Collection Reader
to read incoming emails from the Annotations Database
and convert them into run-time CAS objects, and b) a
CAS Consumer to store the annotated CAS objects back
into the Annotations Database (see Figure 1).

The annotators in the RADAR CPE include components
which are written in Java, and which integrate directly
into the UIMA run-time (which is also written in Java).

The exceptions are legacy components (Connexor parser,
KANTOO Mapper, and SCONE) which are deployed as
network services; for these components, the annotator
implementation consists of a UIMA wrapper which
maintains a network connection to the appropriate
network server and takes care of translation to/from the
CAS representation when the remote service is used to
process the email text.

4. Evaluation
The use of UIMA in deploying the RADAR NLP
component architecture was evaluated along three
dimensions: overall cost of adoption, measured in
programmer effort; run-time performance of the
completed system, measured in seconds; and robustness
of the resulting implementation, which is discussed in
terms of general observations about the system after
several months of use.

4.1 Overall Cost of Adoption
The RADAR CPE was integrated by programmer who
had already completed a UIMA tutorial and one prior
UIMA deployment. The programmer was able to wrap
and integrate the 15 annotators listed in Section 2 in about
6 weeks of full-time work. This work was greatly
facilitated by the UIMA framework, which allowed the
initial deployment to take place very quickly. Remaining
concerns about use of UIMA in the longer term are related
to robustness of the communication with remote services;
see Section 4.4 for further discussion.

4.2 Run-Time Performance
The run-time speed of the annotators (measured over 250
sample messages) is shown in Table 1.

Table 1: Annotator Processing Time, 250 messages

Most of the annotators required less than a second per
document, on average. The most time-consuming

% Time(ms) s/doc Annotator
65.27 5310311 21.24 DFrame
24.60 2001145 8.00 GFrame
2.99 243653 0.97 RADAR Person
2.65 215952 0.86 SCONE Sem.
1.50 122228 0.49 Temporal Expr.
1.03 83563 0.33 Person Name
0.71 57742 0.23 SCONE Impl.
0.54 44187 0.18 F-Structure
0.18 14889 0.06 Email Opening
0.17 13513 0.05 SpaceRequest
0.17 13445 0.05 Conexor
0.07 5835 0.02 Typo
0.06 4746 0.02 CAS Consumer
0.03 2725 0.01 Collection Reader
0.03 2415 0.01 Task

100.00 8136349 32.55 Entire Pipeline

30

annotators are the DFrame and GFrame annotators, which
evaluate two different sets of semantic interpretation rules
at run time to transform the original functional structure
into a final frame output.

4.3 Accuracy
We also evaluated the accuracy of some of the annotators
in the RADAR CPE through human evaluation of the
output. We randomly selected 50 messages and evaluated
whether or not each annotation was correct. The precision
(the percentage of annotations that were correct) are
shown in Table 2. For comparison, the number of
structures which were correct but is also shown.

Annotator % Correct % Partly
Correct

Vendor Order Annotator 100% --
Task Annotator 73% 77%

Person Name Annotator 76% 85%
Space Request Annotator 64% 79%

Table 2: Annotator Precision

4.4 Transparency and Robustness
Although UIMA provided excellent support for quickly
integrating different NLP components, the most
straightforward implementation of legacy components as
networked services was not completely robust. The first
implementation used direct TCP socket connections to
remote server machines, and parsed the low-level string
protocols provided by each service. There was no support
for process logging or server restart in our implementation,
so it became time-consuming to debug system failures
when a networked component was involved. For example,
if a new, buggy set of KANTOO Mapper rules was
deployed for the KANTOO DFrame server, the DFrame
Annotator might experience an error state when calling
out to the server; the only means of debugging such a
failure at present is to manually inspect the log messages
on the KANTOO server, and to restart the service
manually as required.

5. Conclusion and Future Work
Our adoption of UIMA for integrating the RADAR CPE
was an overall success. In only six weeks a single
programmer was able to integrate 15 different NLP
components into a single pre-processor for incoming
email messages. The system includes native Java
components as well as remote services integrated via Java
wrappers, and reads and writes annotated email messages
from a persistent relational store.

In future work, we intend to address the robustness issues
with better design for remote NLP services. It would be
preferable to integrate such services via a common
standard that is already well-supported in Java (for
example, WSDL). This would simplify the integration of
remote services in RADAR while placing responsibility
for standards compliance on the service remote side,

rather than the client side. In retrospect, it would have
been a cleaner approach to write web service wrappers for
each of the remote NLP components before integrating
them into UIMA, but this would have taken additional
programmer time before a working prototype would have
been achieved.

Another possible approach is to deploy third-party
annotators as brokered services. This would promote the
migration of code for handling native service protocol
messages from the UIMA client pipeline out to the remote
service. Such a design would provide cleaner separation
of responsibility between the service and client, since it
does not require the UIMA client pipeline to incorporate
low-level details of the third-party service protocol.

In order to improve the transparency and robustness of the
system, better logging is required, especially with respect
to the operations of remote services that are integrated
into the pipeline. We are beginning to investigate the new
UIMA-EE framework as a means to achieve better
logging in the overall pipeline. Eventually, we hope to
build a predictive model of remote service performance
that will allow us to dynamically allocate back-end
processing nodes for optimal pipeline throughput.

6. Acknowledgements
This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA)
under Contract No. NBCHD030010. We also thank the
anonymous reviewers for their helpful comments on an
earlier draft of this paper.

7. References
Cohen, William W. (2004). Minorthird: Methods for

Identifying Names and Ontological Relations in Text
using Heuristics for Inducing Regularities from Data,
http://minorthird.sourceforge.net.

Han, Benjamin, Donna Gates and Lori Levin
(2006).Understanding temporal expressions in emails.
Proceedings of the Human Language Technology
Conference, Association for Computational
Linguistics.

Kumar, M. et al. (2007). Summarizing Non-textual
Events with a ‘Briefing’ Focus. Proceedings of RIAO,
Centre De Hautes Etudes Internationales
D'Informatique Documentaire.

Nyberg, E., T. Mitamura, K. Baker, D. Svoboda, B.
Peterson and J. Williams (2002). “Deriving Semantic
Knowledge from Descriptive Texts using an MT
System”, Proceedings of AMTA 2002.

Yang, Y. et al. (2005). Robustness of Adaptive Filtering
Methods in a Cross-Benchmark Evaluation.
Proceedings of ACM SIGIR, 98–105. ACM Press.

31

