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Abstract 
This paper describes the use of  the Unstructured Information Management Architecture (UIMA) to integrate a set of natural language 
processing  (NLP) tools in the RADAR system. The challenge was to define a common data model and a set of component interfaces 
for these tools, so that they could be integrated into a single system. The integrated system is used to pre-process each email arriving in 
the RADAR user’s IMAP store. We present a UIMA collection processing engine for RADAR, including a common type system for 
text analysis results and annotators for each of the NLP tools. The paper also includes an analysis of system performance and a 
discussion of the lessons learned through use the of UIMA for this integration task. 

 

1. Introduction 
This paper describes the use of  the Unstructured 
Information Management Architecture (UIMA) to 
integrate a set of natural language processing (NLP) 
components in the RADAR system. The RADAR 
(Reflective Agent with Distributed Adaptive Reasoning) 
system is comprised of a set of intelligent agents that 
assist the user with routine tasks such as email and 
scheduling 1 .  Its initial test domain is conference 
planning. 
 
RADAR agents include a Calendar Agent, which notices 
requests for appointments and helps the user to fit them 
into his or her calendar, and a Briefing Assistant, which 
extracts important parts of documents such as meeting 
minutes to provide automatic briefings (Kumar et al. 
2007). These two RADAR agents assume that email 
messages have been pre-processed with text analysis 
software to recognize important ranges of text (for 
example, a request for a meeting. or an action item). This 
pre-processing is accomplished by a large set of both 
pre-existing, and project-developed, NLP tools.  
 
The architectural challenge was to define a common data 
model and a set of component interfaces for these tools, so 
that they could be integrated into a single system. The 
integrated system is used to pre-process each email 
arriving in the RADAR user’s IMAP store; the output of 
the NLP tools is stored in the form of standoff annotations 
- data structures derived from text analysis which are 
stored separately from the text itself. The UIMA 
framework is used to define a common type system for 
text analysis results.  An annotator wrapper was written 
for each NLP component in the pre-processor. Each 
annotator wrapper is responsible for providing input to an 
NLP component in its native format, and converting the 

                                                           
1 http://radar.cs.cmu.edu/ 

output of the component back into standoff annotations. 
The annotator wrappers were integrated into a single 
collection processing engine (CPE). An object referred to 
as the common analysis structure (CAS) is created for 
each input message; this structure includes storage for the 
original text, as well as storage and an index for each 
annotation type. Components produce instances of 
annotation types, which are stored in the CAS as it is 
passed from component to component. The RADAR CPE 
also includes Collection Reader and CAS Consumer 
components, which are responsible for reading and 
writing email messages and their annotations to and from 
the persistent database storage. The full CPE is depicted 
in Figure 1. 

Annotations Database

1 a new email message is 
stored in the annotations 
database 

RADAR Collection Processing Engine (CPE)

Collection
Reader

CAS 
ConsumerAnnotator Annotator…

CAS

2 A UIMA Collection Processing Engine is invoked. Stand-off
annotations (tags) are created to capture the system’s 
understanding of the email. 

Radar 
Agent

email 
messages 

message
annotations (tags) 

3 The results are stored in the 
Annotations Database for use 
by other RADAR agents

Radar 
Agent…

Annotations Database

1 a new email message is 
stored in the annotations 
database 

RADAR Collection Processing Engine (CPE)

Collection
Reader

CAS 
ConsumerAnnotator Annotator…

CAS

2 A UIMA Collection Processing Engine is invoked. Stand-off
annotations (tags) are created to capture the system’s 
understanding of the email. 

Radar 
Agent

email 
messages 

message
annotations (tags) 

3 The results are stored in the 
Annotations Database for use 
by other RADAR agents

Radar 
Agent…

 
Figure 1: The RADAR Collection Processing Engine 

 
The following sections provide more detail regarding the 
design and implementation of the RADAR CPE. Section 
2 describes the NLP components that were integrated. 
Section 3 describes the process that was followed to 
integrate the different modules into the CPE. Section 4 
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provides an analysis of system performance and discusses 
the lessons learned when using UIMA to integrate our 
suite of NLP components. Section 5 concludes with some 
suggestions for future work. 

2. Annotators & Related Components  
This section provides a list of the annotators in the 
RADAR CPE, including a brief description of each 
annotator’s subtask, the component that it wraps, its input 
annotation types (if any) and its output annotation types. 
The annotators are described in the order that they are run 
for each input email. 

2.1 Email Opening Annotator 
 The Email Opening Annotator identifies the span of text 
in the message that contains the opening or greeting, e.g. 
"Dear Blake,". This annotator is implemented by a 
hand-coded set of surface patterns written in the Mixup 
language provided by the MinorThird toolkit (Cohen, 
2004). It is the first component to process the email text, 
and it requires no prior input annotations. It outputs 
instances of a single, simple annotation type with no 
attributes: EMAIL_HEADING. 

2.2 Typo Annotator 
The Typo Annotator identifies spans of text in the 
message that are likely to be misspelled words, and lists 
alternatives. This annotator is implemented via the open 
source Jazzy spell checker2, and it requires no prior input 
annotations. It outputs instances of a single annotation 
type called TypoAnnotation, which has two attributes: 
Typo, the token string containing the spelling error, and 
Corrections, an array of strings containing proposed 
corrections, sorted in order of increasing string edit 
distance from the original token string. 

2.3 Connexor Annotator 
The Connexor Annotator uses the Connexor parser3 to 
mark spans of text denoting sentences, tokens, parts of 
speech and lemmas for tokens, and functional dependency 
grammar parses for sentences. This annotator requires no 
prior input annotations, and outputs instances of three 
annotation types: ConnexorSentence, ConexorToken 
(including attributes POS and Lemma), and 
ConnexorParse (which includes an attribute, Value, which 
contains a string representation of the Connexor parse 
analysis). 

2.4 Temporal Expression Annotator 
The Temporal Expression Annotator identifies spans of 
text containing temporal expressions such as "next 
Thursday". This annotator is implemented using 
MinorThird compiled annotation rules. It outputs a single 
annotation type, TimeExpression, which includes an 
attribute, AnchoredValue, containing a canonical time 
expression for the precise date and time indicated by the 
                                                           

                                                          2 http://jazzy.sourceforge.net/ 
3 http://www.connexor.eu/ 

surface text, in a format based on ISO8601 (Han et. Al, 
2006). Note that a relative time expression like “next 
Thursday” can only be resolved to an AnchoredValue by 
calculating its calendar position relative to the time that 
the email was sent. 
 

2.5 Functional Structure Annotator 
The Functional Structure (FS) Annotator processes the 
information provided by the prior annotations to produce 
a grammatical functional structure or f-structure for each 
sentence. Each f-structure contains information about the 
grammatical functions (or roles) expressed in the sentence, 
such as subject, object, indirect object, etc. The FS 
Annotator is implemented… (need something from Eric 
R. here). This annotator requires input annotations 
EMAIL_HEADING, CXR_PARSE, and TEMPORAL_EXPRESSION, 
and produces a single output annotation, F_STRUCTURE. 

2.6 General Frame (GFrame) Annotator 
The General Frame (GFrame) Annotator processes the 
F_STRUCTURE annotations  to produce a general (that is, 
not domain-specific) semantic frame representation. The 
GFrame Annotator uses the Mapper component from the 
KANTOO machine translation system (a general 
transformation engine for feature structures) (Nyberg et 
al., 2002), and a set of general (non-domain-specific) 
interpretation rules. The GFrame annotator outputs a 
single annotation type, GFRAME. 

2.7 Domain Frame (DFrame) Annotator 
The Domain Frame (DFrame) Annotator processes the 
F_STRUCTURE and Gframe annotations for each sentence 
to produce a domain-specific semantic frame 
representation, for the conference scheduling domain. 
The DFrame annotator is implemented using the 
KANTOO Mapper component and a set of 
domain-specific interpretation rules. The DFrame 
annotator outputs a single annotation type, DFRAME. 

2.8 Person Name Annotator 
The Person Name Annotator identifies possible person 
names using a Hidden Markov Model trained with the 
MinorThird toolkit. Outputs a single annotation type, 
PERSON_NAME_VPHMM. 

2.9 RADAR Person Annotator 
The RADAR Person Annotator identifies names of 
known individuals, e.g. “Blake Randal”, using a Hidden 
Markov Model trained with the MinorThird toolkit 4 . 
Outputs a single annotation type, RADAR_PERSON. 

2.10 SCONE Implicit Feature Annotator 
The SCONE Implicit Feature Annotator looks up 
information from the SCONE Knowledge Base for terms 
in email. Outputs a single annotation type, 

 
4 http://minorthird.sourceforge.net/ 
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IMPLICIT_FEATURE. 

2.11 SCONE Semantic Annotator 
The SCONE Semantic Annotator connects and 
communicates with a network-based SCONE and 
SconeGrammar server, retrieving semantic and/or 
element data relations that SCONE has for a given text. It 
outputs three annotations: DISCOURSE_STRUCTURE 
(attributes: SEMANTIC_VALUE, STRUCTURE_SPEC_TYPE), 
BRIEFING_CONCEPT (attribute: VALUE), and 
BRIEFING_HEURISTIC (attribute: VALUE). 

2.12 Vendor XML Annotator 
The Vendor XML Annotator produces a custom XML 
representation for conference vendor order confirmation 
and vendor quote e-mails (as for, e.g., food providers). 
This annotator outputs a single annotation type, 
VENDOR_XML (with attribute VALUE). 

2.13 Space Request Annotator 
The Space Request Annotator extracts information from 
e-mails requesting physical space (office/room/lab space, 
etc.) and produces a custom XML representation. This 
annotator outputs a single annotation type, SPACE_XML 
(with attribute SPACE_REQUEST_VALUE). 

2.14 Task Annotator 
The Task Annotator identifies overall tasks for the 
RADAR agents, where tasks are pre-defined in the 
conference scheduling domain. This annotator outputs a 
single annotation type, TASK (with attributes 
TASK_TEMPLATE and TASK_CATEGORY). 

2.15 Briefing Annotator 
The Briefing Annotator uses 6 sets of trained Minorthird 
models to guess the likelihood of each email being one of 
six types of briefing request.  (These are used to generate a 
briefing email to the conference organizer’s supervisor.)  
Returns a single annotation whose value is a string 
containing the subset of the 6 types deemed possible, as 
comma separated values: "attendance", "av", "food", 
"general", "reschedule", "room". This annotator produces 
a single annotation type, BRIEFING (with attribute 
BRIEFING_CATEGORIES). 

3. RADAR CPE Integration 
The components listed in Section 2 were integrated into a 
single Collection Processing Engine (CPE) for RADAR. 
In addition to the annotator listed above, two additional 
UIMA components were required: a) a Collection Reader 
to read incoming emails from the Annotations Database 
and convert them into run-time CAS objects, and b) a 
CAS Consumer to store the annotated CAS objects back 
into the Annotations Database (see Figure 1). 
 
The annotators in the RADAR CPE include components 
which are written in Java, and which integrate directly 
into the UIMA run-time (which is also written in Java). 

The exceptions are legacy components (Connexor parser, 
KANTOO Mapper, and SCONE) which are deployed as 
network services; for these components, the annotator 
implementation consists of a UIMA wrapper which 
maintains a network connection to the appropriate 
network server and takes care of translation to/from the 
CAS representation when the remote service is used to 
process the email text. 

4. Evaluation 
The use of UIMA in deploying the RADAR NLP 
component architecture was evaluated along three 
dimensions: overall cost of adoption, measured in 
programmer effort; run-time performance of the 
completed system, measured in seconds; and robustness 
of the resulting implementation, which is discussed in 
terms of general observations about the system after 
several months of use. 

4.1 Overall Cost of Adoption 
The RADAR CPE was integrated by programmer who 
had already completed a UIMA tutorial and one prior 
UIMA deployment. The programmer was able to wrap 
and integrate the 15 annotators listed in Section 2 in about 
6 weeks of full-time work. This work was greatly 
facilitated by the UIMA framework, which allowed the 
initial deployment to take place very quickly. Remaining 
concerns about use of UIMA in the longer term are related 
to robustness of the communication with remote services; 
see Section 4.4 for further discussion. 

4.2 Run-Time Performance 
The run-time speed of the annotators  (measured over 250 
sample messages) is shown in Table 1. 
 

Table 1: Annotator Processing Time, 250 messages 
 
Most of the annotators required less than a second per 
document, on average. The most time-consuming 

% Time(ms) s/doc Annotator 
65.27 5310311 21.24 DFrame 
24.60 2001145 8.00 GFrame 
2.99 243653 0.97 RADAR Person 
2.65 215952 0.86 SCONE Sem. 
1.50 122228 0.49 Temporal Expr. 
1.03 83563 0.33 Person Name 
0.71 57742 0.23 SCONE Impl. 
0.54 44187 0.18 F-Structure 
0.18 14889 0.06 Email Opening 
0.17 13513 0.05 SpaceRequest 
0.17 13445 0.05 Conexor 
0.07 5835 0.02 Typo 
0.06 4746 0.02 CAS Consumer 
0.03 2725 0.01 Collection Reader 
0.03 2415 0.01 Task 

100.00 8136349 32.55 Entire Pipeline 
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annotators are the DFrame and GFrame annotators, which 
evaluate two different sets of semantic interpretation rules 
at run time to transform the original functional structure 
into a final frame output. 

4.3 Accuracy 
We also evaluated the accuracy of some of the annotators 
in the RADAR CPE through human evaluation of the 
output. We randomly selected 50 messages and evaluated  
whether or not each annotation was correct. The precision 
(the percentage of annotations that were correct) are 
shown in Table 2. For comparison, the number of 
structures which were correct but is also shown. 
 

Annotator % Correct % Partly 
Correct 

Vendor Order Annotator 100% -- 
Task Annotator 73% 77% 

Person Name Annotator 76% 85% 
Space Request  Annotator 64% 79% 

Table 2: Annotator Precision 

4.4 Transparency and Robustness 
Although UIMA provided excellent support for quickly 
integrating different NLP components, the most 
straightforward implementation of legacy components as 
networked services was not completely robust. The first 
implementation used direct TCP socket connections to 
remote server machines, and parsed the low-level string 
protocols provided by each service. There was no support 
for process logging or server restart in our implementation, 
so it became time-consuming to debug system failures 
when a networked component was involved. For example, 
if a new, buggy set of KANTOO Mapper rules was 
deployed for the KANTOO DFrame server, the DFrame 
Annotator might experience an error state when calling 
out to the server; the only means of debugging such a 
failure at present is to manually inspect the log messages 
on the KANTOO server, and to restart the service 
manually as required. 

5. Conclusion and Future Work 
Our adoption of UIMA for integrating the RADAR CPE 
was an overall success. In only six weeks a single 
programmer was able to integrate 15 different NLP 
components into a single pre-processor for incoming 
email messages. The system includes native Java 
components as well as remote services integrated via Java 
wrappers, and reads and writes annotated email messages 
from a persistent relational store. 
 
In future work, we intend to address the robustness issues 
with better design for remote NLP services. It would be 
preferable to integrate such services via a common 
standard that is already well-supported in Java (for 
example, WSDL). This would simplify the integration of 
remote services in RADAR while placing responsibility 
for standards compliance on the service remote side, 

rather than the client side.  In retrospect, it would have 
been a cleaner approach to write web service wrappers for 
each of the remote NLP components before integrating 
them into UIMA, but this would have taken additional 
programmer time before a working prototype would have 
been achieved.  
 
Another possible approach is to deploy third-party 
annotators as brokered services. This would promote the 
migration of code for handling native service protocol 
messages from the UIMA client pipeline out to the remote 
service. Such a design would provide cleaner separation 
of responsibility between the service and client, since it 
does not require the UIMA client pipeline to incorporate 
low-level details of the third-party service protocol. 
 
In order to improve the transparency and robustness of the 
system, better logging is required, especially with respect 
to the operations of remote services that are integrated 
into the pipeline. We are beginning to investigate the new 
UIMA-EE framework as a means to achieve better 
logging in the overall pipeline. Eventually, we hope to 
build a predictive model of remote service performance 
that will allow us to dynamically allocate back-end 
processing nodes for optimal pipeline throughput. 

6. Acknowledgements 
This material is based upon work supported by the 
Defense Advanced Research Projects Agency (DARPA) 
under Contract No. NBCHD030010. We also thank the 
anonymous reviewers for their helpful comments on an 
earlier draft of this paper. 

7. References 
Cohen, William W. (2004). Minorthird: Methods for 

Identifying Names and Ontological Relations in Text 
using Heuristics for Inducing Regularities from Data, 
http://minorthird.sourceforge.net. 

Han, Benjamin, Donna Gates and Lori Levin 
(2006).Understanding temporal expressions in emails. 
Proceedings of the Human Language Technology 
Conference, Association for Computational 
Linguistics. 

Kumar, M. et al. (2007). Summarizing Non-textual 
Events with a ‘Briefing’ Focus. Proceedings of RIAO, 
Centre De Hautes Etudes Internationales 
D'Informatique Documentaire. 

Nyberg, E., T. Mitamura, K. Baker, D. Svoboda, B. 
Peterson and J. Williams (2002). “Deriving Semantic 
Knowledge from Descriptive Texts using an MT 
System”, Proceedings of AMTA 2002.  

Yang, Y. et al. (2005). Robustness of Adaptive Filtering 
Methods in a Cross-Benchmark Evaluation. 
Proceedings of ACM SIGIR, 98–105. ACM Press. 

31




